

MICROBIAL MEAT ANALOGUE

Provided by : Abolfazl Kadkhoda Mohammad Azarkaman Supervisor : Dr Pezeshki Date Time : 18 June 2024 at 12 : 00

CONTENTS

Slide page	title
3	Introduction
4	Scrutiny of meat analogues
5	Marketing
6	Examples of analogues
12	Single cell protein
13	Attributes of micro organism
14	Micro organism used in SCP production
15	Saccharomyces
17	Industrial production of single sell protein
20	reference

INTRODUCTION

- Produced by advanced biological processes
- Plant based or microbial
- Has similar appearance to the original meats but there are differences in the ingredients
- It is also called artificial meat or imitation meat

SCRUTINY OF MEAT ANALOGUE

Advantages

- Easy maintenance
- Suitable for vegan
- Low cost
- Maintaining animal welfare
- Ecologically beneficial

Disadvantages

- Low nutritional value
- Trans fat
- Harmful additives (nitrate, nitrite and sulfur dioxide)
- Phosphates added for thickening

MARKETING

Alternative Meat Market Poised for Growth

Estimated meat substitute sales in selected countries in 2018

@StatistaCharts Sources: Barclays, Euromonitor

- Contains 8 essential amino acids (leucine, isoleucine, valine, phenylalanine, threonine, methionine, tryptophan and lysine)
- Good source of fiber, iron, calcium, zinc and B complex
- High protein (36gr protein in 100gr)
- Without cholesterol
- Low saturated fatty acid
- Low cost

SOY MILK

- Soaking dry soybean and grinding them
- Contains 5.3% protein like cow's milk
- Suitable for people with lactose intolerance
- Fortified with calcium carbonate to make it digestible for humans (because it have insoluble calcium)

TOFU

- Made from condensed soy milk
- Plant based
- Contains large amounts of micronutrients
- Contains calcium, phosphorus and isoflavone
- High protein (17gr protein in 100gr)
- Made into compact cubic blocks

SEITAN

- Plant based
- Produced by gluten
- Low carbohydrate
- High protein(25gr protein in 100gr)
- Contains iron, calcium and phosphorus

CULTURED MEAT

SINGLE CELL PROTEIN (SCP)

- Called microbial protein (raw or edible protein)
- Provided by mold, yeast, bacteria or algae
- Used as a protein supplement

SINGLE CELL PROTEIN (SCP)

Advantages

- Cheapness of raw materials for production
- Rich in protein content (2.3gr in 1cup)
- Production of various amino acid compounds
- More digestible than vegetable protein

Disadvantages

- Possibility of secondary metabolite production (Toxin)
- Cause digestive reactions in some people
- Cause gout and kidney stones due to high consumption
- Cause allergic effects in some people

ATTRIBUTES OF SELECTED MICROORGANISM

- Fast growth rate
- Genetic manipulation
- Compatibility with a wide range of substrate
- Ability to cultivate in large scale
- No toxin
- The ability to collect a large amount of protein

MICROORGANISM USED IN SCP PRODUCTION

- Algae : Spirulina maxima, Chlorella pyrenoidosa
- Bacteria : Methylmonase clara, Achromobacter delvacvate, Bacillus megatrium
- Mold : Aspergillus niger, Trichoderma viride, Paecilomyces variot
- Yeast : Candidia lipolitica, Saccharomyces cerevisiae

SACCHAROMYCES CEREVISIAE

- Isolated from grape skin
- Being used in the production of bread, cake and bear
- Being used in the production of SCP and newly synthesized protein
- Optimum temperature = 25-30
- Optimum pH = 4.5-5.5
- Diameter = 5-10 micrometer
- Use due to the high production rate of SCP (32-38gr per liter)

UP STREAM

- Saccharomyces cerevisiae (microorganism)
- Pineapple waste (substrate)
- Dextrose peptone culture medium (pH=6, T=4, 10gr yeast extract, 20gr dextrose, 20gr peptone, 20gr agar, 1000ml water) (substrate)
- sterilization in T=121 till 15min

MAIN STREAM

- Continuous fermentation
- 5 culture medium (10gr D-glucose, 1gr nacl, 1gr cacl2, 0.5gr mgso4, 1000ml water, pH=5.5)
- Putting in incubator in T=28 till 7 day
- With aeration

DOWN STREAM

- 1) Ultra filtration : in order to concentrate protein
- 2) Centrifuge : in order to separate the protein content (t=10 till 30 min, v=1000 till 2000 rpm)
- 3) Settle down : in order to deposit
- 4) Screening : in order to protein separation by semipermeable membrane

 Hint : we use ammonium sulfate in settle down because for low cost, produce high amounts of protein and differentiate protein from by product

REFERENCE

- Perplexity AI
- Gpt4 AI
- Replica AI
- Production of SCP from pineapple waste
- Meat analogues : types, methods of productions
- Google scholar
- Pubmed

THANKS FOR YOUR CONSTANT REMARK